牛吃草”问题的解答。
“我的答案是5.5天。
直接按照题意设方程。
设牧场原有草量为y,每天新增加的牧草可供x头牛食用,25头牛能够在z天将草吃完,根据题目条件,列出下列方程式:
22x+y=10×22;10x+y=16×10;zx+y=25×z;
解方程组可得:x=5;y=110;z=5.5。
其实这个问题和水池抽放水的题目很像,只要找到不变量就很简单了。”
看到这个答案,路明远心道:总算有人用方程来解题目了。不枉自己写了未知数那一章啊!
接下来,他还发现有人用分数来解的,还有用比例来解的……
“不错不错!人多果然力量大。”
对于这四个答案,路明远都很满意,如果晚上再没有新的解法的话,他就准备将悬赏平分了,每人二十五点。
将这四个答案置顶后,他便不再理会底下的那些彩虹屁,而是准备看一看其他的题目。
比如刚才那一道智商检测题目。
点开姜子淳的答案进入题目后,路明远扫视了下,发现对方已经被姜子淳彻底教会了。
其实就是五八四十,然后小数点后移两位等于0.40,最后一个零省略就是0.4了。
甚至姜子淳还给了对方其他的解法:0.5可以看作是二分之一,也就是一半,0.8的一半自然是0.4了。
再要不就是分数相乘,十分之五乘以十分之八,分子分母同时相乘,等于百分之四十,还是0.4。
“好吧!这个我懂了!但是按照这个算法,就会出现一个问题,假如一斤苹果八十文钱,也就是0.8两,那我买5两,应该付多少钱?四两?”
看到这里,路明远都有些无语了,这家伙是真糊涂还是装糊涂?这都能弄混?
不过姜子淳还是耐心的解答,说两个“两”是一样的,不能一概而论。还说两个单位相同的话是不能直接相乘的。
见到这话,路明远皱了皱眉,他去题目里面搜了下,发现果然还有很多问这方面的题目,而且数量还不少,有好几千个,甚至还有问为什么四万乘以四万要等于十六亿,而不是等于十六万的。
看来,自己书里写的还不够清楚啊!
这群……哎!
摇着头,路明远开始回复姜子淳:
“其实,单位相同是可以相乘的。
比如我们常见的一米乘以一米等于一平方米。
虽然可以乘,但是此时的米和平方米已经是不同的单位了。它们两一个是长度单位,一个是面积单位,已经不能直接换算了。比如你不能说一米等于多少平方米。
在我看来,在实际应用中,如果要进行带单位的四则运算,那么它们的单位也要进行相应的运算才行。
相同单位的话,进行加减法的时候还等于原来的单位,也就是一米加一米等于两米。这里面的米加米、米减米还等于米。
但是此时如果单位不相同呢,比如一米加一分米,那么就要将其化为相同的单位,不然不能直接运算。
此时既可以将一米化为十分米,和一分米相加,得到十一分米;也可以将一分米化为0.1米,相加得到1.1米。不管是哪一种,只要单位相同就行。
而进行乘除法运算的时候,就和加减法不一样了。
此时,米乘以米等于平方米,而米除以米是单位一。
还有一个例子就是四万乘以四万的问题,此时我们也可以将‘万’看做单位,此时单位和数字分别相乘,计算出应该等于十六万万。
但是跟上面的平方米的例子不同,此处的万万呢,还可以写成另外一个单位,那就是亿,所以十六万万也等于十六亿。
当然,我们也可以将四万这个整体看做是一个数字,直接相乘的话还是同样的结果。
至于上面买苹果那个问题,它的单价是0.8两,那么计算的时候就应该写为0.8两银子/斤×5两,由于斤和两可以换算,那么刚才的式子还可以写成0.8两银子/斤×0.5斤。
此时数字和单位分别相乘,结果就是0.4两银子。
不换算的话,那就要写成:4两银子*两/斤。
这个式子看起来很麻烦,也不太容易理解,所以现实生活中,我们一般是能化简就化简,能约掉的就约掉。简单方便嘛!”
写完没几分钟,路明远就收到了回复。
温柔可爱姜子淳:感谢大佬指出错误。其他的我都理解了,但是米除以米等于单位一,这个怎么理解?
路在脚下:这里的单位一你可以看作是纯数字,它是无量纲的,无单位的。
不过在实际生活中,我们也可以人为的赋予它意义,比如一本书、一个苹果、一段路程等等。
甚至还可以是几倍,比如4米是2米的2倍;2米是3米的2/3。
再比如有一个题目,10米长的木条,每段截1米,可以截多少段?
这个题目我们可以这样计算:10÷1=10段;也可以写成:10米÷1米=10。